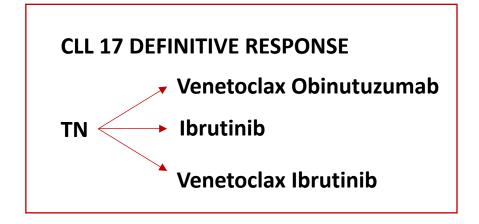
Esistono criteri di come selezionare la strategia

terapeutica paziente-specifico?

Alessandra Tedeschi ASST GOM Niguarda Milano

BTK continuous Tx

Ibrutinib, acalabrutinib, zanubrutinib


Fixed duration tx

Venetoclax plus Obinutuzumab

No head to head comparison

Approximately 75% 4 y PFS in RCT

Depends on Disease genetic charcateristics

IN THE MEANWHILE?

ADVISORY BOARD: 12 Hematologists

IGHV MUTATED — Venetoclax Obinutuzumab (age independent): 9

→ BTKi in the very elderly/ Venetoclax Obinutuzumab in the younger: 3

IGHV UNMUTATED — BTKi (age independent): 6

BTKi in the very elderly /Venetoclax Obinutuzumab in the younger 6

Del 17 p → BTKi: 10

Venetoclax Obinutuzumab: 2

Patients

- Age
- Comorbidities
- · Concomitant medications
- Logistics (care givers)

Disease characteristics matters

Del17p/Tp53mu

IgHV mutational status

Bulky disease

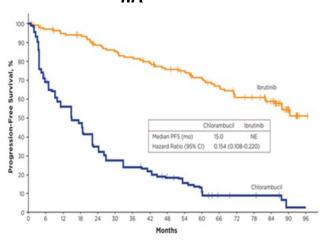
BTK continuous Tx

Ibrutinib, acalabrutinib, zanubrutinib

Fixed duration tx

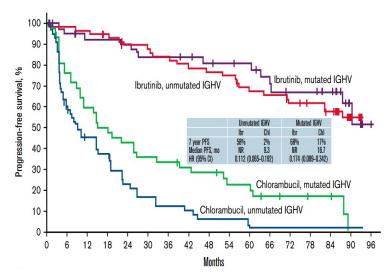
Venetoclax Obinutuzumab

......Patient's opinion......?

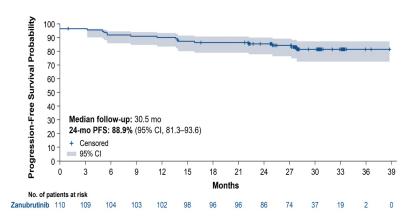

BTK continuous Tx

Ibrutinib, acalabrutinib, zanubrutinib

Efficacy


Prolonged PFS

Resonate 2 Ibrutinib vs Chl



PFS independent from IGHV status

Resonate 2 Ibrutinib vs Chl

Prolonged PFS in del17p del SEQUOIA arm C: Zanubrutinib

BTK continuous Tx: Ibrutinib Clinical Trials

Age impact

Indirect Comparison arm IR E1912 and Alliance

Grade 3+ AE	IR Arm E1912 ¹ Median age 57 y	IR Alliance ² Median age 71 y
Infection	8%	20%
Atrial fibrillation	3%	6%
Bleeding	1%	4%
Hypertension	19%	34%
Deaths during active treatment +30 days	1%	7%

¹Shanafelt et al 2019; ²Woyach et al 2018

RESONATE-2 Burger et al, NEJM 2015, Leukemia 2019 Chlorambucil vs Ibrutinib

- Age ≥65 years
- For pts 65-70 y, comorbidity that preclude FCR

	Favor Ibrutinib	Favor Chlorambucil	N	Hazard Ra	itio 95% CI
All patients	I ė I		269	0.155	(0.105, 0.228)
Age	11				
<70	j 4		80	0.076	(0.026, 0.219)
≥70	ŀ⊷H		189	0.175	(0.114, 0.268)

Illuminate Moreno et al, Lancet 2019 Chlorambucil+Obin. vs Ibrutinib+Obin

- Age ≥65 years
- Age < 65 if CIRS > 6 and/or CrCl< 70ml/min

Subgroup	Number of paties	nts (events)		Hazard ratio
	lbrutinib plus obinutuzumab	Chlorambucil plus obinutuzumab		(95% CI)
Age <65 years	22 (7)	24 (19)		0.29 (0.12-0.70)
≥65 years	91 (17)	92 (55)	<u> </u>	0.22 (0.12-0.37)

Resonate Munir et al, AJH 2019 Ofatumumab vs ibrutinib

	No. of Patients		Hazard Ratio (95% CI)
All patients	391	i ipi	0.156 (0.119-0.204)
Age		1 1	
<70	233	P-1	0.120 (0.084-0.172)
≥70	158	i •−1	0.219 (0.146-0.328)

BTK continuous Tx: Ibrutinib Clinical Trials

Comorbidities

E1912 Ibrutinib + Rituximab vs FCR in Younger Patients With Previously Untreated CLL Update Median Follow-up 48 months

- 73% patients randomized to Ibrutinib + R remained on treatment (median: 43 mos)
- In 95 pts discontinuing Ibrutinib, median time on treatment was 20.3 mos
- Causes of Ibrutinib discontinuation:

PD or death in 23 pts (7%), AEs in 48 pts (14%), other reasons in 24 pts (7%)

- 72 pts discontinuing Ibrutinib for reasons other than PD or death
 - Median PFS: 22.5 mos
 - Median time of therapy: 15.1 mos
 - CIRS score predicted Ibrutinib discontinuation other than PD or death: (HR, 1.13 per each unit increase; 95% CI, 1.03-1.23; P = .009).

BTK continuous Tx: Ibrutinib in common practice

Age impact

Do age, fitness, and concomitant medications influence management

28 DECEMBER 2021 • VOLUME 5, NUMBER 24

S blood advances

Alessandra Tedeschi, ¹ Anna Maria Frustaci, ¹ Francesca Romana Mauro, ² Annalisa Chiarenza, ³ Marta Coscia, ⁴ Stefania Ciolli, ⁵ Gianluigi Reda, ⁶ Luca Laurenti, ⁷ Marzia Varettoni, ⁸ Roberta Murru, ⁹ Claudia Baratè, ¹⁰ Paolo Sportoletti, ¹¹ Antonino Greco, ¹² Chiara Borella, ¹³ Valentina Rossi, ¹⁴ Marina Deodato, ¹ Annalisa Biagi, ¹⁵ Giulia Zamprogna, ¹ Angelo Curto Pelle, ³ Gianfranco Lapietra, ² Candida Vitale, ⁴ Francesca Morelli, ⁵ Ramona Cassin, ⁶ Alberto Fresa, ⁷ Chiara Cavalloni, ⁸ Massimiliano Postorino, ¹⁵ Claudia Ielo, ²

and outcomes of patients with CLL treated with ibrutinib?

Comorbidities did not independently influence Ibrutinib management

Roberto Cairoli, 1 Francesco Di Raimondo, 3 Marco Montillo, 1 and Giovanni Del Poeta 15

Table 3. Cox proportional regression hazards model of factor on PFS, EFS, OS, Tox-DTD, and PDR

	PFS		EFS		os		Tox-D	TD	PDR	
	HR (95% CI)	P	HR (95% CI)	P	HR (95% CI)	P	HR (95% CI)	P	HR (95% CI)	P
Age	0.82 (0.57-1.18)	.296	0.83 (0.59-1.15)	.254	0.85 (0.54-1.35)	.496	0.91 (0.53-1.54)	.722	0.73 (0.45-1.18)	.201
ECOG-PS	2.43 (1.72-3.42)	<.001	2.63 (1.92-3.61)	<.001	3.90 (2.61-5.85)	<.001	3.30 (2.09-5.20)	<.001	1.52 (0.91-2.55)	.112
CIRS6	1.48 (1.02-2.15)	.037	1.44 (1.03-2.00)	.033	1.01 (0.63-1.62)	.964	1.33 (0.80-2.21)	.270	1.12 (0.70-1.81)	.638
CIRS3 ⁺	0.79 (0.52-1.19)	.261	1.03 (0.71-1.48)	.894	0.95 (0.58-1.56)	.844	1.54 (0.94-2.51)	.084	1.72 (1.08-2.75)	.024
CCI	1.10 (0.71-1.72)	.662	1.19 (0.79-1.78)	.416	1.37 (0.75-2.52)	.306	1.53 (0.72-3.25)	.268	3.88 (1.50-10.06)	.005
Neutropenia	1.70 (1.09-2.67)	.020	1.51 (1.001-2.27)	.049	1.72 (1.01-2.91)	.044	1.83 (1.04-3.22)	.038	1.08 (0.57-2.02)	.814
CYP3A4	1.07 (0.66-1.76)	.780	1.26 (0.82-1.94)	.285	1.09 (0.59-2.03)	.784	1.15 (0.59-2.25)	.670	2.05 (1.24-3.41)	.005
del(17p) and/or TP53 ^{mut}	2.19 (1.57-3.04)	<.001	1.78 (1.32-2.40)	<.001	2.06 (1.35-3.15)	<.001	1.59 (0.98-2.57)	.059	0.94 (0.60-1.48)	.800
Lines of previous Tx	1.85 (1.17-2.95)	.009	1.65 (1.10-2.48)	.015	2.73 (1.33-5.60)	.006	1.80 (0.97-3.34)	.064	1.32 (0.79-2.22)	.289

BTK continuous Tx: Ibrutinib

PFS impact

Do age, fitness, and concomitant medications influence management

28 DECEMBER 2021 • VOLUME 5, NUMBER 24

and outcomes of patients with CLL treated with ibrutinib?

S blood advances

Alessandra Tedeschi, ¹ Anna Maria Frustaci, ¹ Francesca Romana Mauro, ² Annalisa Chiarenza, ³ Marta Coscia, ⁴ Stefania Ciolli, ⁵ Gianluigi Reda, ⁶ Luca Laurenti, ⁷ Marzia Varettoni, ⁸ Roberta Murru, ⁹ Claudia Baratè, ¹⁰ Paolo Sportoletti, ¹¹ Antonino Greco, ¹² Chiara Borella, ¹³ Valentina Rossi, ¹⁴ Marina Deodato, ¹ Annalisa Biagi, ¹⁵ Giulia Zamprogna, ¹ Angelo Curto Pelle, ³ Gianfranco Lapietra, ² Candida Vitale, ⁴ Francesca Morelli, ⁵ Ramona Cassin, ⁶ Alberto Fresa, ⁷ Chiara Cavalloni, ⁸ Massimiliano Postorino, ¹⁵ Claudia Ielo, ² Roberto Cairoli, ¹ Francesco Di Raimondo, ³ Marco Montillo, ¹ and Giovanni Del Poeta ¹⁵

CIRS >6 was confirmed as a predictor of poorer PFS and EFS

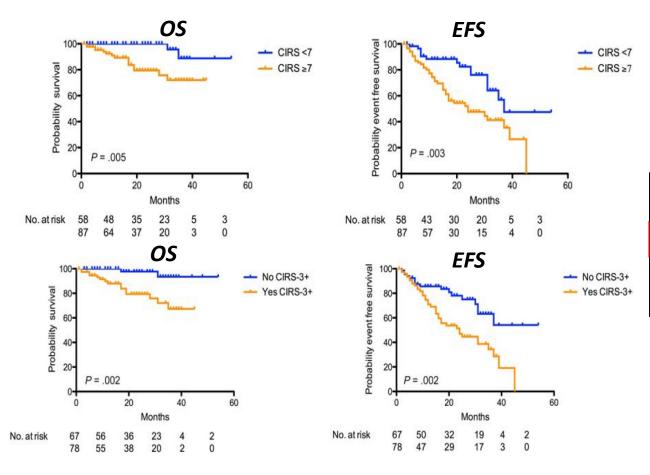

Baseline ECOG-PS was the most accurate predictor of ibrutinib feasibility and outcomes

Table 3. Cox proportional regression hazards model of factor on PFS, EFS, OS, Tox-DTD, and PDR

	PFS		PFS EFS OS			Tox-D	TD	PDR		
	HR (95% CI)	P	HR (95% CI)	P	HR (95% CI)	P	HR (95% CI)	P	HR (95% CI)	P
Age	0.82 (0.57-1.18)	.296	0.83 (0.59-1.15)	.254	0.85 (0.54-1.35)	.496	0.91 (0.53-1.54)	.722	0.73 (0.45-1.18)	.201
ECOG-PS	2.43 (1.72-3.42)	<.001	2.63 (1.92-3.61)	<.001	3.90 (2.61-5.85)	<.001	3.30 (2.09-5.20)	<.001	1.52 (0.91-2.55)	.112
CIRS6	1.48 (1.02-2.15)	.037	1.44 (1.03-2.00)	.033	1.01 (0.63-1.62)	.964	1.33 (0.80-2.21)	.270	1.12 (0.70-1.81)	.638
CIRS3 ⁺	0.79 (0.52-1.19)	.261	1.03 (0.71-1.48)	.894	0.95 (0.58-1.56)	.844	1.54 (0.94-2.51)	.084	1.72 (1.08-2.75)	.024
CCI	1.10 (0.71-1.72)	.662	1.19 (0.79-1.78)	.416	1.37 (0.75-2.52)	.306	1.53 (0.72-3.25)	.268	3.88 (1.50-10.06)	.005
Neutropenia	1.70 (1.09-2.67)	.020	1.51 (1.001-2.27)	.049	1.72 (1.01-2.91)	.044	1.83 (1.04-3.22)	.038	1.08 (0.57-2.02)	.814
CYP3A4	1.07 (0.66-1.76)	.780	1.26 (0.82-1.94)	.285	1.09 (0.59-2.03)	.784	1.15 (0.59-2.25)	.670	2.05 (1.24-3.41)	.005
del(17p) and/or TP53 ^{mut}	2.19 (1.57-3.04)	<.001	1.78 (1.32-2.40)	<.001	2.06 (1.35-3.15)	<.001	1.59 (0.98-2.57)	.059	0.94 (0.60-1.48)	.800
Lines of previous Tx	1.85 (1.17-2.95)	.009	1.65 (1.10-2.48)	.015	2.73 (1.33-5.60)	.006	1.80 (0.97-3.34)	.064	1.32 (0.79-2.22)	.289

BTK continuous Tx: Ibrutinib in common practice

Comorbidities

	Median EFS, %	P	Median OS, %	P
Age < 65 y				
CIRS: >7 (n = 29) vs $<$ 7 (n = 14)	57 vs 83	.08	63 vs 100	.005
CIRS-3+: yes (n = 26) vs no (n = 17)	57 vs 91	.01	70 vs 100	.03
Age ≥ 65 y	95 (9)	9.9	102 100	T.
CIRS: ≥ 7 (n = 29) vs < 7 (n = 73)	45 vs 75	.11	83 vs 100	.10
CIRS-3+: yes (n = 41) vs no (n = 61)	43 vs 68	.10	82 vs 96	.02

Not all the comborbidities are the same!

When BTKi should be avoided

BTKis **NOT** recommended for patients with:

History of ventricular arrhythmia

Family history of sudden cardiac death

Severe, uncontrolled HTN

Severe or uncontrolled congestive heart failure (LVEF <30%)

Ventricular arrhythmias and sudden death events following acalabrutinib initiation

Bhat et al Blood, 2022

290 consecutive pts treated with acalabrutinib for B-cells malignancies (89% for CLL) between 2014 and 2020 Median age: 64 years

Over a median follow-up of around 42 months:

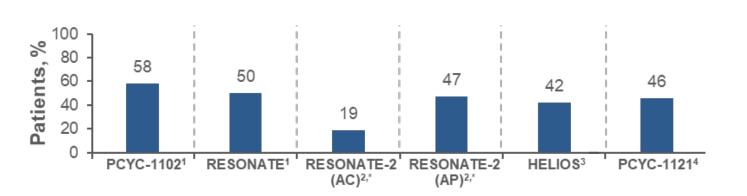
10 patients developed symptomatic ventricular tachyarrhythmias

including 1 sudden death/ventricular fibrillation, and 1 recurrent sustained ventricular tachycardia.

Taken together, these initial data on second-generation BTK suggest a class effect also for ventricular tachyarrhythmias, to be confirmed by larger trials and real-world registries. As known, no trial has been powered for these events, and therefore, any conclusive consideration appears premature

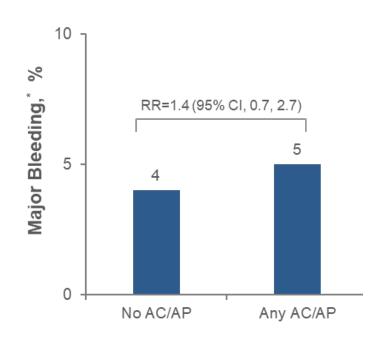
Boriani et al 2022

In conclusion, it is vital that patients and caregivers be aware of the severe cardiotoxicity associated with ibrutinib and also with the second-generation BTKi acalabrutinib. Consideration of cardiovascular adverse effects is an important decision-making tool for selecting treatment for CLL, even in a regimen based on acalabrutinib.


BTKi: concomitant use of interfering drugs

		Ibrutinib ¹	Acalabrutinib ³	Zanubrutinib ²
	Strong CYP3A inhibitors	Interrupt dose or temporary stop	Interrupt dose or temporary stop	May be ↓ 80 mg qd
May increase	Moderate CYP3A inhibitors	↓ to 280 or 140 mg (low dose posa or voric) or 70 mg (high dose posa), qd	\downarrow to 100 mg qd	↓ 80 mg, bid
toxicity	Mild CYP3A inhibitors	No changes	No changes	No changes
May	Strong CYP3A inducers	Avoid concomitant use	Increase dose to 200 mg approximately every 12 hrs	Avoid concomitant use
decrease efficacy	Moderate and mild CYP3A inducers	No indications, clinical judgment	No indications, clinical judgment	No indications, clinical judgment

Anticoagulant/Antiplatelet Use in Clinical Trials


Concomitant use of ACs/APs was common in ibrutinib clinical studies

AC/AP Use in Clinical Trials

Anticoagulants or antiplatelet agents were used in approximately 50% of patients in ibrutinib trials

Occurrence of Bleeding According to Antiplatelet/Anticoagulant Use

AC/AP use did not significantly increase risk of major bleeding in the ibrutinib group

^{*}Only for patients who received ibrutinib.

BTK continuous Tx

Ibrutinib, acalabrutinib, zanubrutinib

- PFS independent from IGHV status
- -Prolonged PFS in del17p del
- **✓ FEASIBLE IN ALL AGES**

✓ EASY TO DELIVER NO INTENSIVE EARLY MONITORING (TLS ONLY CASE REPORTS) EASY LOGISTICS

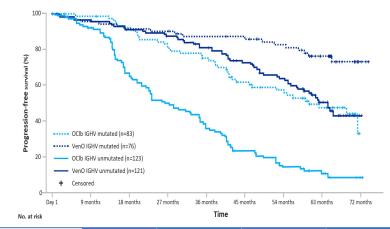
SEVERE CARDIOLOGICAL COMORBIDITIES

- NEED OF CONCOMITANT:
 - POTENT CYP3A4 INDUCERS
 - POTENT CYP3A4 INHIBITORS

✓ CIRS MAY HAVE AN IMPACT (SPECIFIC SCORE NEEDED, WHICH COMORBIDITIES?)

Fixed duration tx

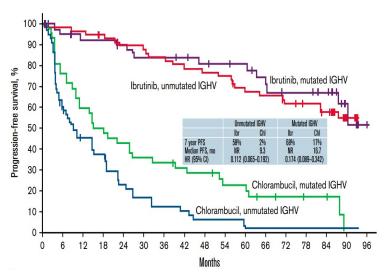
Efficacy


CLL 14 Venetoclax Obinutuzumab vs Chlorambucil Obinutuzumab

Prolonged PFS

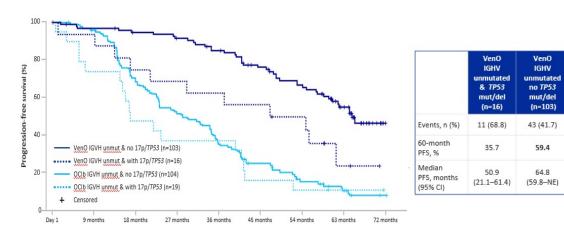
	VenO (n=216)	OClb (n=216)
Events, n (%)	80 (37.0)	150 (69.4)
HR (95% CI), stratified p-value	0.35 (0.2 p<0.	26–0.46) 0001
60-month PFS, %	63	27
Median PFS, months (95% CI)	NR	36.4 (34.1–41.0)

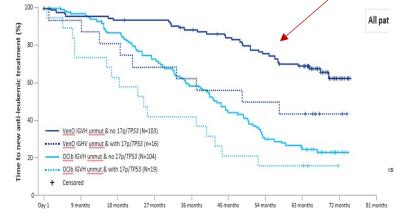
PFS according to IGHV status



	VenO IGHV mutated (n=76)	OClb IGHV mutated (n=83)	VenO IGHV unmutated (n=121)	OCIb IGHV unmutated (n=123)	
Events, n (%)	17 (22.4)	40 (48.2)	55 (45.5)	100 (81.3)	
60-month PFS, %	76.5	49.7	55.8	12.5	
HR (95% CI)	0.41 (0	.23-0.73)	HR 0.25 (0.17-0.36)		
Median PFS, months (95% CI)	NE (NE–NE)	59.9 (46.0-NE)	64.2 (57.0–NE)	26.9	

PFS in IGHV unmutated pts


PFS



CLL 14 Ven O vs Chl O

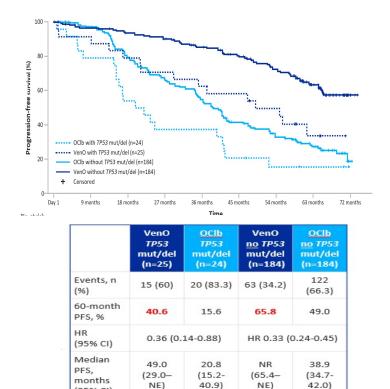
PFS IGHV Unmut ± del(17p)/TP53m

TTNT IGHV Unmut ± del(17p)/TP53m

	VenO IGHV unmutated & TP53 mut/del (n=16)	VenO IGHV unmutated no <i>TP53</i> mut/del (n=103)	VenO (n=216)
Events, n (%)	9 (56.3)	32 (31.1)	62 (28.7)
60-month TTNT, %	43.6	70.3	72.1
Median PFS, months (95% CI)	52.8 (15.2–41.7)	NE	NE

(n=216)

63


Fixed duration tx

Efficacy

CLL 14 Venetoclax Obinutuzumab vs Chlorambucil Obinutuzumab

Better PFS in non del17p

COX regression PFS	Univariate comparison	Hazard ratio	95% Wald CI	
Disease burden d	category (TLS risk catego	ory)		
High	Vs. intermediate/low	2.815	1.773-4.469	-=-
Deletion 17p				
del(17p)	vs. no del(17p)	3.150	1.727-5.745	

(95% CI)

In the context of Ven-Obi, **pre-treatment disease burden** (max. lymph node size >5 cm and absolute lymphocyte count > 25 G/l) and **deletion 17p** are independent prognostic factors for PFS.

Venetoclax or Venetoclax Rituximab: clinical trials

Age impact

Data pooled from 4 phase 1 and 2 trials:

436 pts: 387 venetoclax mono

49 venetoclax plus rituximab

Median Age (range): 66 y (28-88)

≥70 y: 152 (35%)

≥70 yrs NO differences:

- response depth
- Response duration
- MRD negativity

Roberts et al, 2019

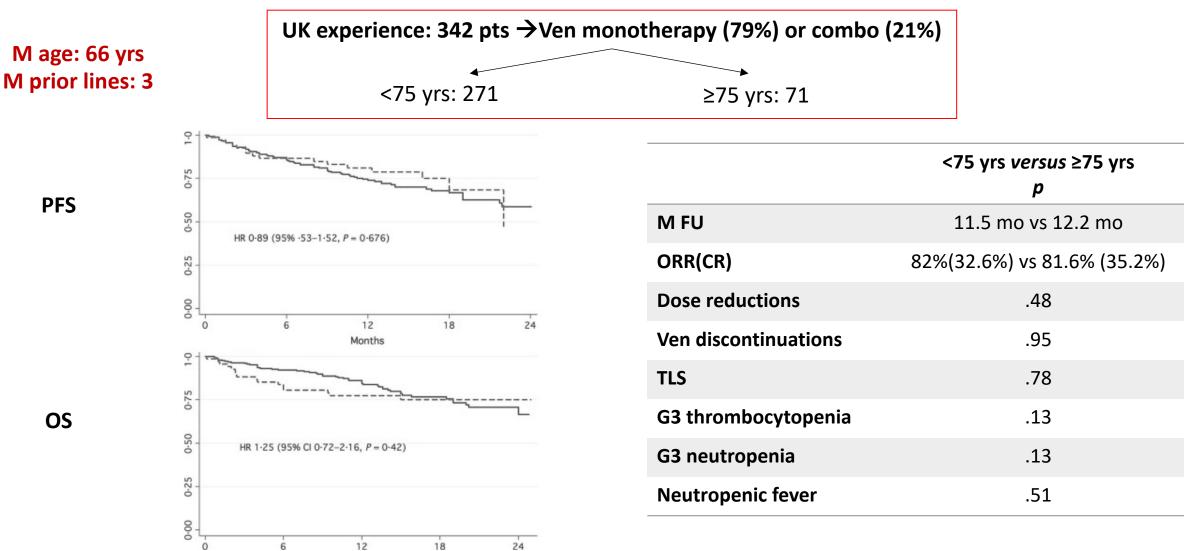
Data pooled from 4 phase 1 and 2 trials:

350 pts: 387 venetoclax monotherapy

49 venetoclax plus rituximab

Median Age (range): 66 y (28-88)

< 75 y /≥75 y: 65%/35%


<75 vs ≥75 yrs No differences:

- AE all/AE grade 3-4/SAE
- AEs leading to:-dose reductions
 - -interruption
 - -discontinuations

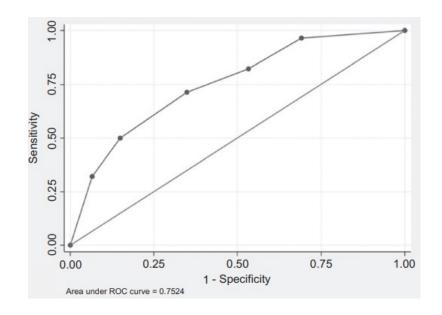
Davids et al., 2018

Venetoclax Monotherapy: common practice

Age impact

Venetoclax Monotherapy: common practice

TLS risk


TLS incidence (on 297 pts):

clinical \rightarrow 8 pts (2.7%)

lab \rightarrow 17 pts (5.5%)

Baseline Variable	Odds Ratio	P value
	(95% Confidence Interval)	
Gender (female vs male)	1.3 (0.55-3.1)	0.55
Age at venetoclax initiation (continuous)	1.0 (1.0-1.1)	0.11
Number of prior therapies (continuous)	1.0 (0.83-1.2)	0.96
Prior Ibrutinib (yes vs no)	0.71 (0.27-1.9)	0.49
Deletion 17p (present vs absent)	1.3 (0.54-2.9)	0.59
Complex karyotype (present vs absent)	2.6 (0.96-7.1)	0.061
IGHV mutational status (unmutated vs mutated)	0.95 (0.10-8.7)	0.96
Creatinine Clearance (<80 mL/min vs ≥80 mL/min)	<mark>3.3 (1.1-9.5)</mark>	<mark>0.031</mark>
Administration strategy (monotherapy vs paired)	2.9 (0.65-12.5)	0.16
TLS Risk Group (high vs low)	3.0 (1.0-9.3)	<mark>0.048</mark>
TLS Risk Group (intermediate vs low)	2.4 (0.77-7.3)	0.13

On 297 pts receiving venetoclax, TLS risk group (low vs high) and CrCl (<80 vs ≥80 ml/min) were the only factors influencing TLS risk at uni and multivariate analysis

Venetoclax Monotherapy: common practice

Coexisting conditions and concomitant medications do not affect venetoclax management and survival in chronic lymphocytic leukemia

Anna Maria Frustaci, Giovanni Del Poeta*, Andrea Visentin, Paolo Sportoletti, Alberto Fresa, Candida Vitale, Roberta Murru, Annalisa Chiarenza, Alessandro Sanna, Francesca Romana Mauro, Gianluigi Reda, Massimo Gentile, Marzia Varettoni, Claudia Baratè, Chiara Borella, Antonino Greco, Marina Deodato, Giulia Zamprogna, Roberta Laureana, Alessandra Cipiciani, Andrea Galitzia, Angelo Curto Pelle, Francesca Morelli, Lucio Malvisi, Marta Coscia, Luca Laurenti, Livio Trentin, Marco Montillo, Roberto Cairoli and Alessandra Tedeschi

THERAPEUTIC ADVANCES in Hematology 2022, Vol. 13: 1–14

Tox-DTD and PDR were not influenced by age, fitness, number/type of concomitant medication, baseline neutropenia or impaired renal function

None of these factors were associated with TLS development

Age/CIRS had no influence on PFS, EFS and OS

Table 4. Cox proportional regression hazards model on PFS, EFS, OS, Tox-DTD, and PDR.

	PFS		EFS		05		Tox-DTD		PDR	
	HR (95% CI)	p	HR (95% CI)	р	HR (95% CI)	р	HR (95% CI)	р	HR (95% CI)	р
Age	0.99 (0.55–1.81)	0.984	0.79 (0.46-1.37)	0.402	0.91 (0.45-1.83)	0.783	1.08 (0.79–1.46)	0.636	1.07 (0.78-1.48)	0.664
ECOG-PS	1.67 (0.91–3.07)	0.096	2.00 (1.17-3.42)	0.011	3.41 (1.84-6.32)	<0.0001	0.85 (0.58-1.25)	0.421	0.97 (0.64-1.48)	0.897
CIRS3+	1.07 (0.60–1.91)	0.815	1.36 (0.78-2.37)	0.282	1.12 (0.58–2.18)	0.741	0.89 (0.62-1.29)	0.550	0.95 (0.64-1.40)	0.777
CIRS >6	0.90 (0.49-1.68)	0.742	0.67 (0.37-1.21)	0.179	0.89 (0.43-1.84)	0.751	1.03 (0.72-1.47)	0.887	0.98 (0.67-1.44)	0.925
Polypharmacy	1.01 (0.49-2.07)	0.978	1.03 (0.56-1.93)	0.915	1.18 (0.53-2.64)	0.685	1.09 (0.78–1.54)	0.615	1.08 (0.76-1.52)	0.678
Neutropenia	0.93 (0.47-1.83)	0.838	1.09 (0.59-2.03)	0.779	0.92 (0.43-1.97)	0.824	1.14 (0.77-1.69)	0.508	0.74 (0.49-1.11)	0.143
CrCl	1.16 (0.63-2.14)	0.639	1.11 (0.63-1.98)	0.717	1.14 (0.56-2.29)	0.721	1.02 (0.71-1.46)	0.933	0.88 (0.59-1.31)	0.529

Venetoclax Obinutuzumab: CLL14 clinical trial

Age/comorbidities

Only pts with CrCl <30 ml/min excluded

Characteristic	Venetoclax- Obinutuzumab (n=216)	Chlorambucil– Obinutuzumab (n=216)	
Age			
Median — yr (range)	72 (43-89)	71 (41–89)	
≥75 yr — n (%)	72 (33.3)	78 (36.1)	
Male sex — n (%)	146 (67.6)	143 (66.2)	
Median time from diagnosis — mo (range)	31.2 (0.4-214.7)	29.2 (0.3–244.8)	
Binet stage — n (%)			
A	46 (21.3)	44 (20.4)	
В	77 (35.6)	80 (37.0)	
С	93 (43.1)	92 (42.6)	
B-symptoms present — n (%)†	103 (47.7)	112 (51.9)	
TLS risk category — n (%)	10 IA	764 160	
Low	29 (13.4)	26 (12.0)	
Intermediate	139 (64.4)	147 (68.1)	
High	48 (22.2)	43 (19.9)	
Total CIRS score			
Median (range)	9 (0-23)	8 (1-28)	
>6 — n (%)	186 (86.1)	177 (81.9)	
Estimated creatinine clearance			
Median — ml/min (range)	65.2 (0.1-3670.0)	67.5 (31.0-2217.6)	
<70 ml/min — n (%)	128/215 (59.5)	118/213 (55.4)	

Pts charcateristics:

High TLS risk: 22.2%

Renal Comorbidity: 30.1%

CrCl <70 ml/min 59.5%

TLS incidence (on 216 pts):

clinical \rightarrow 0

lab \rightarrow 3 pts (1.4%)

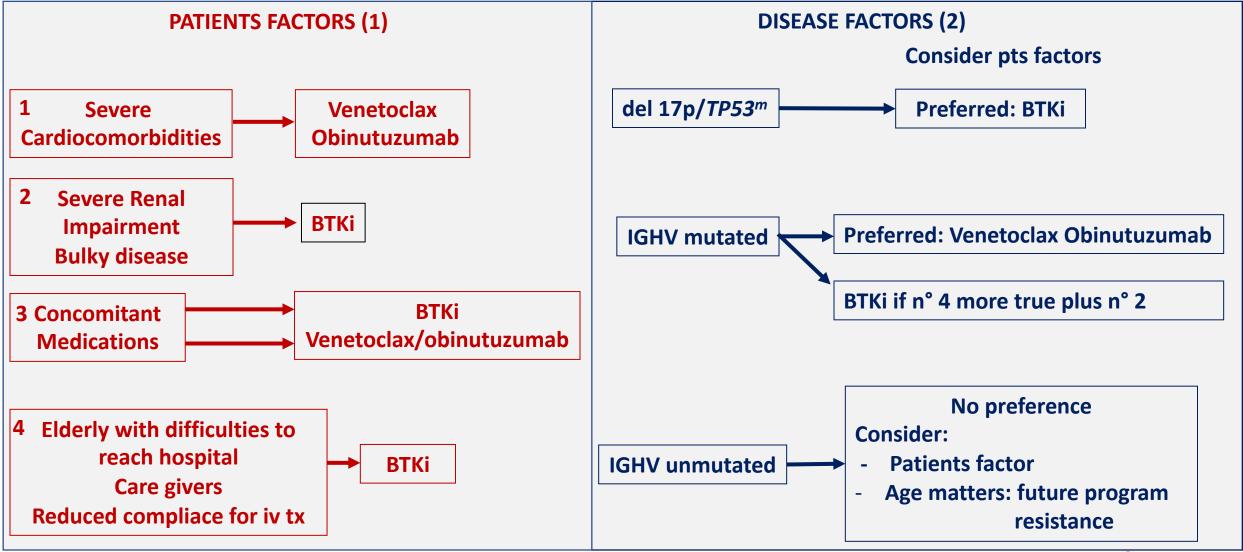
All 3 occurring with obinu, before ven initiation

Venetoclax: concomitant use of interfering drugs

			Ramp-up phase	Treatment phase	
May increase toxicity		Strong CYP3A inhibitors	Avoid concomitant use	Reduce at 75%	
		PgP inhibitors	Avoid concomitant use	Monitor carefully	
		Moderate CYP3A inhibitors	Avoid	Reduce 50%	
		Mild CYP3A inhibitors	No changes	No changes	
May decrease efficacy		Strong CYP3A inducers	Avoid concomitant use	Avoid concomitant use	
		Moderate CYP3A inducers	Avoid concomitant use	Avoid concomitant use	

Venetoclax Obinutuzumab FD

- **✓ EFFECTIVE**
- **✓ FEASIBLE IN ALL AGES**


✓ NO COMORBIDITIES IMPACT

- **✓** ↓ PFS in del17p/*TP53 m*
- ✓ HIGH TUMOR BURDEN:

 -TLS
 -INTENSIVE MONITORING
- ✓ LOGISTICS (CARE GIVERS...

PERSONAL CONSIDERATION (WHILE WAITING CLL17)

